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Abstract
A non-empirical fully ionic description, with the anion wavefunctions in their compressed but
still spherically symmetrical states optimal for the crystal, is presented for the cohesive
energetics of two cubic phases of three solid iodides, KI, RbI and CsI. The non-correlated part
of the energy is computed using the RELCRION program which takes full account of
relativistic effects. Both the dispersive attractions and energies arising from electron
correlations of short range are computed.

For each polymorph stable under ambient conditions, the rock-salt (B1) phases of KI and
RbI and the eightfold coordinated (B2) phase of CsI, the cohesion is slightly underestimated.
The lattice energy deficits of around 22 kJ mol−1 for KI and RbI are reduced to around
13 kJ mol−1 for CsI, with overestimations of some 0.2 au in the equilibrium cation–anion
separations R decreasing as the metal becomes more electropositive. The prediction that the B2
phase of CsI is more stable (by 6 kJ mol−1) than the B1 polymorph agrees with experiment. For
both KI and RbI, the zinc-blende polymorph is predicted to lie some 37 kJ mol−1 in energy
above the B1 polymorph.

An additional potential, plausibly ascribed to slight covalency, correcting these
underestimations is derived semi-empirically.

S Supplementary data are available from stacks.iop.org/JPhysCM/20/085222

1. Motivation

There are two different motivations for the present, essentially
non-empirical, study of the cohesive properties of three
solid alkali iodides. The inter-ionic pair potentials that are
necessarily generated in order to achieve the first objective
of this paper are central to the second motivation, that of
generating some of the data needed to study alkali iodide
nanocrystals.

The first reason for this study is that it is a logical
continuation of the previous non-empirical investigations [1],
based on a fully ionic description, of the cohesive
properties and phase transitions in a range of fluorides [2],
chlorides [3–5] and oxides [6–9]. The fully ionic description
is defined [1, 10, 11] by the total crystal wavefunction being
written as an anti-symmetrized product of individual ion
wavefunctions, each of which is spherically symmetric and
contains the integral number of electrons consistent with its
formal charge. Such a description has been shown to provide
an excellent account of the cohesive properties of such solids
including the long-standing and challenging problem [12–15]
of explaining why solid caesium chloride is eightfold rather

than sixfold coordinated under ambient conditions [3, 4].
It is, therefore, interesting to test the accuracy of such a
description for solids which might be expected to show greater
deviations from full ionicity than those considered in the
previous investigations which did not reveal any evidence for
even partial covalency.

The second motivation for the present investigation, and
in particular the study of the iodides of potassium, rubidium
and caesium, is that each of these salts has been prepared
in one or more nanocrystalline forms by encapsulation in
single-walled carbon nanotubes [16–20]. Furthermore, the
encapsulated structures of both these crystals, as well as
other materials, have been accurately determined by recently
developed methods in high resolution transmission electron
microscopy (HRTEM) [21, 22]. The majority of the
encapsulated iodides have structures based on the rock-salt
lattice [16–20], although encapsulated CsI crystals based on
the eightfold coordinated body-centred cubic (B2) structure
have also been observed [18, 20]. All the encapsulated KI,
RbI and some of the CsI crystals exhibited, when viewed
down the nanotube axis, a fragment of the {001} plane of a
rock-salt structured lattice. Each fragment contained either
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four or nine ions in cross-section depending on the diameter
of the nanotube so that there are four or nine chains of ions
respectively. Thus in the four chain (2 × 2) case, this first
plane consists, to within the accuracy of the experiment [17],
of a square arrangement of ions with those of the same charge
located at the ends of the diagonals. Although each four chain
or nine chain structure is based on the rock-salt lattice, the
inter-ionic separations are significantly distorted from those
of the bulk with the inter-plane separations being significantly
reduced whilst those within each plane are appreciably dilated.
The first theoretical study [23, 24] of encapsulated KI used
semi-empirical inter-ionic potentials [25] dating from the
1970s with the ion–wall interactions scaled from those of
the corresponding inert gases. Although this study fulfilled
its primary objective of elucidating the mechanism by which
the nanotubes became filled by immersion in the molten
salt, it could only reproduce the experimentally observed
structures if it were assumed that the encapsulating nanotube
was surrounded by the bulk material during the microscopy.
However, during the HRTEM experiments used to determine
the structure, there was no surrounding salt. Furthermore,
the structures of the encapsulated salts were shown to remain
unchanged on annealing [26]. A density functional study [27]
of encapsulated 2 × 2 KI was unable to reproduce the dilation
of the in-plane distances, not unsurprising in view of the
inability of such methods to correctly capture the dispersive
attractions. Another set of semi-empirically derived inter-ionic
potentials [28, 29] included neither the dipole–quadrupole
dispersive attractions nor the damping of the dipole–dipole
terms and invoked the set of ionic polarizabilities presented
by Tessman et al [30]. This set is now known [31] both to
contain severe inconsistencies and to predict values that cannot
stand comparison with modern ab initio computations [32–35].
Furthermore the potentials [28, 29] contain semi-empirically
determined dispersion coefficients [36] similar to those [37, 38]
now known [35] to be too large by factors of around three.
These potentials do not, therefore, provide an attractive basis
for investigating the structures of the encapsulated iodide
nanocrystals.

The difficulties just discussed showed the need to calculate
accurate inter-ionic potentials including a correct description
of the dispersive attractions. The investigation [39] of the
encapsulated nanocrystals, which successfully explained the
experimental structures [17, 20] of 2 × 2 crystals of KI
and CsI, relied on the potentials to be described. The
computation of such potentials, achieving the second objective
of the present work, is necessarily accompanied by an
investigation of the cohesion of the bulk crystals, the first
objective. A necessary prerequisite of any investigation of
the structures of the encapsulated nanocrystals is the use of
potentials correctly reproducing the inter-ionic separations of
the bulk materials. Furthermore, the potentials presented here
were used to test a global analytic theory [40], based on
the Born model, of the structures of the non-encapsulated
binary ionic nanocrystals. For bulk KI and RbI, both the
experimentally observed rock-salt phases are examined as
well as the fourfold coordinated zinc-blende structures, the
latter being considered because the ions in the four chain

nanocrystals are coordinated by four other ions. For bulk
CsI, both experimentally observed structures, namely the rock-
salt phase and the eightfold coordinated polymorph having the
CsCl structure, are considered.

2. Ionic description

2.1. Methods

2.1.1. The uncorrelated potentials. The methods used in the
fully ionic description are identical with those described [1, 4]
and used previously [1–7, 9]. Hence these need only be
outlined in detail sufficient to define the quantities whose
numerical values are reported.

The first step is to derive the individual ion wavefunctions
whose anti-symmetrization yields the wavefunction for all the
electrons in the crystal composed of equal numbers of cations
(C) and anions (A). There is abundant evidence [1, 31–35, 41]
that cations with p6 outermost electronic configurations are
essentially unaffected by their environment in-crystal, as
evidenced by the constancy of their charge distributions
[1, 32–34] and polarizabilities [31–35]. The cation
wavefunctions, therefore taken to be same as those of a
free cation, were computed using the Oxford Dirac–Fock
program [42]. This, using a Dirac Hamiltonian and four
component orbital wavefunctions, ensures a fully relativistic
description.

Anions are significantly affected by their environment
in-crystal, being less polarizable [31–33, 35, 43, 44] with
charge distributions contracted [1, 32, 33, 43] compared to
those of the free ion. These polarizability reductions and
contractions depend on both the inter-nuclear distance [44–46]
and polymorph [44, 46, 47] in any one crystal as well as
on the cation in comparisons of different crystals at their
equilibrium geometries [31–34, 44, 46, 47]. Furthermore
any dispersion coefficient involving an anion is smaller than
the corresponding value with the free anion as shown by
ab initio computations for both the dipole–dipole [35] and
dipole–quadrupole dispersive attractions [48]. For the present
investigations of KI, RbI and CsI, the anion wavefunctions
were computed using the RELCRION program [49] and the
OHSMFS in-crystal model [5, 6]. This model describes the
interaction of the anion electrons with their environment in-
crystal by adding to the Fock Hamiltonian for an electron in the
free ion, a model operator, the OHSMFS term, depending on
two constants A and q . These are determined by the variational
criterion that the crystal cohesive energy U 0

L(R) computed
using this uncorrelated description is minimized. For a crystal
of stoichiometry CA, this energy, measured relative to the sum
of the energies of the free ions, is given by [1, 10, 11]

U 0
L(R) = Nf

{
− M

R
+ E0

re(R) + nCAV 0
sCA(R)

+ 1
2 [nAAV 0

sAA(xAA R) + nCCV 0
CC(xCC R)]

}
(2.1)

after neglecting the very small short-range interactions
between pairs of ions more distant than the closest cation–
anion, anion–anion and cation–cation terms. The geometry
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Table 1. Fitted short-range cation–cation interactions VsCC(rcc) (au). (Note: constants A1, b1, A2 and b2 defined by equation (2.3). Rb+
values taken from [5].)

Cation C A1 b1 A2 b2 χ2

K+ 75.6692 0.717 528 −65.929 0.727 383 7.105 × 10−10

Rb+ 170 958.0 0.351 755 −0.061 54 0.961 563 3.942 × 10−11

Cs+ 27 460 800.0 0.317 341 −0.000 310 2.104 27 8.226 × 10−11

of a cubic crystal is defined by the closest cation–anion
separation R. Each integer nXY is the number of closest Y
ions neighbouring one ion of type X. All the terms in the curly
brackets { . . . } are expressed in atomic units per ion or per ion
pair whilst Nf is a constant converting a binding energy per ion
into one per mole. In (2.1), M is the Madelung constant and
E0

re(R) is the positive rearrangement energy needed to convert
one isolated anion in its ground state into the state optimal
for the crystal with geometry defined by R. The potential
V 0

sXY(xXY R) is the energy of interaction of one ion of type X
with one of type Y, separated by a distance xXY R, measured
relative to the sum of the energies that ions X and Y would
have when isolated if they still had the wavefunctions optimal
for the crystal with geometry defined by R.

The relativistic integrals program (RIP) [50, 51] yields
fully relativistic results for the short-range two-body inter-
actions which are exact for the wavefunctions input to the
program. The two OHSMFS parameters are determined
using RELCRION program which, incorporating both the
RIP [50, 51] and Oxford–Dirac Fock [42] programs, enables
U 0

L(R) to be evaluated for any given A and q which are then
automatically variationally optimized. The optimal values of
these parameters are reported for all the phases of all the crys-
tals in table S1 of the supplementary material (available at
stacks.iop.org/JPhysCM/20/085222). Tables S2–S7 (available
at stacks.iop.org/JPhysCM/20/085222) of this material present
the E0

re(R) as well as the closest cation–anion and anion–anion
interactions V 0

sCA(R) and V 0
sAA(xAA R). For both Rb+ [5] and

Cs+ [4], the cation–cation terms V 0
sCC(xCC R) have been re-

ported elsewhere whilst for K+ this potential is almost negli-
gible, the least negligible value for the phases considered here
being a mere 0.000 059 au for R = 5.0 au in the rock-salt
phase.

2.1.2. The contributions from electron correlation. The total
cohesive energy UT(R) predicted with the inclusion of electron
correlation is given by [1, 11]

UT(R) = U nd
L (R) + Udisp(R) + UAT(R) (2.2)

where U nd
L (R) is given by an expression identical to (2.1)

except that each term, excluding −M/R, is augmented by
a contribution from electron correlations of short-range to
yield totals distinguished from their uncorrelated counterparts
in (2.1) by the absence of the superscript 0. In (2.2), Udisp(R) is
the total two-body dispersion energy whilst UAT(R) is the total
energetic contribution arising from the Axilrod–Teller triple
dipole dispersive interactions.

The short-range correlation contribution to each of the
two-body terms in (2.1) was computed using the density

functional theory (DFT) of a uniform electron gas as
implemented by Gordon and Kim [52]. The resulting
total cation–anion and anion–anion interactions VsCA(R) and
VsAA(xAA R) are reported in tables S2–S7 of the supplementary
material (available at stacks.iop.org/JPhysCM/20/085222).
Each of the computed cation–cation interactions, VsCC(xCC R),
could be reproduced as a function of cation–cation separation
rCC to at least one part in 107 by the expression

VsCC(R) = A1 exp

(
− b1

rCC

)
+ A2 exp

(
− b2

rCC

)
. (2.3)

The resulting parameters A1, b1, A2 and b2 are presented in
table 1.

The correlation contribution Ecorr
re (R) to the rearrangement

energy was evaluated from

Ecorr
re (R) = Bcorr[ECcorr

A (R) − ECcorr
Af ] (2.4)

[2] where ECcorr
Af is the correlation energy of free anion

evaluated using the Cowan modification [53] of the DFT
treatment [52] of a uniform electron gas. This modification
ensures that the correlation energy of a one electron
system is predicted to be zero. ECcorr

A (R) is the similarly
evaluated correlation energy of one isolated anion retaining
the wavefunction optimal for the crystal with cation–anion
separation R. In (2.4), Bcorr is a scaling factor which,
ideally, should be derived as the ratio of the exact total
correlation energy of a free anion to the prediction derived
from the Cowan DFT modification. For the F− and Cl− ions
Bcorr was found to be 0.576 [2] and 0.544 [4] respectively.
Since the total correlation energy of the iodide ion is not
known, Bcorr was taken to be 0.544 since the values for F−
and Cl− indicate that this parameter, for the halide ions at
least, is only weakly dependent on nuclear charge. The
total rearrangement energies Ere(R)[=E0

re(R) + Ecorr
re (R)]

are presented in tables S2–S7 of the supplementary material
(available at stacks.iop.org/JPhysCM/20/085222).

The total crystal dispersion energy Udisp(R) is given by
summing over all pairs of ions the dispersive attraction within
each pair. In the theory of Jacobi and Csanak [54], which
takes account of the damping of the dispersive attractions
when the overlap of the charge densities of the interacting
ions ceases to be negligible, each pair attraction is determined
by the dispersion coefficients and the damping parameters,
one of the latter for each type of ion. The dipole–dipole
C6(XY) dispersion coefficients (tables 2 and 3) were evaluated
from the Slater–Kirkwood formula [55] with each electron
number PX taken to be that which exactly reproduces the exact
C6(XX) from the exact polarizability (αX) of the iso-electronic
inert gas.
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Table 2. Homonuclear two- and three-body dispersion constants and auxiliary data (au). (Note: derivation of coefficients described in the
text. Cation–cation results for Rb+ from [5] and for Cs+ from [4]. Expectation values for each phase computed from anion wavefunctions at
R values close to Re . These R values are 6.5 au (B3 KI), 6.7 au (B1 KI), 6.875 au (B3 RbI), 7.0 au (B1 RbI) and 7.5 au (both CsI phases).)

Ion X αX PX 〈r 2〉 〈r 4〉 KXX C6 (XX) C8 (XX) ν (XXX) dX

K+ 5.339 6.106 14.479 62.230 1.403 22.863 413.593 91.549 2.423
Rb+ 9.05 7.305 20.454 115.899 1.403 55.188 1 316.209 374.857 2.282
Cs+ 15.28 7.901 29.438 226.535 1.403 125.918 4 078.437 1 443.02 2.130
I− (B3 KI) — — 47.013 623.331 1.285 633.610 32 385.243 21 322.085 1.251
I− (B1 KI) 44.869 7.901 46.581 599.491 1.285 633.610 31 435.492 21 322.085 1.445
I− (B3 RbI) — — 47.456 638.619 1.285 653.732 33 913.673 22 462.558 1.239
I− (B1 RbI) 45.814 7.901 46.548 594.929 1.285 653.732 32 209.124 22 462.558 1.517
I− (B1 CsI) — — 47.135 613.732 1.285 670.670 33 664.217 23 440.923 1.507
I− (B2 CsI) 46.602 7.901 46.820 595.193 1.285 670.670 32 866.970 23 440.923 1.509

Table 3. Heteronuclear dipole–dipole, dipole–quadrupole and three-body dispersion coefficients (au). (Note: dipole–quadrupole dispersion
coefficients derived from the Starkschall–Gordon formula using in all cases scaling factors K DQ(CA) = 1.352 and K QD(CA) = 1.394.)

CA Structure C6(CA) CDQ
8 (CA) CQD

8 (CA) ν (CCA) ν (CAA)

KI B3 108.294 2911.878 973.239 496.714 3114.190
KI B1 108.294 2826.482 973.239 496.714 3114.190
RbI B3 176.630 4820.401 2092.762 1345.851 5325.081
RbI B1 176.630 4578.120 2092.762 1345.851 5325.081
CsI B1 279.664 7384.818 4500.052 3495.289 8889.188
CsI B2 279.664 7209.928 4500.052 3495.289 8889.188

This procedure is known to yield values correct to within
5% [1, 35]. The cation polarizabilities (αC, table 2) are
reliably known from a combination of ab initio computation
and analysis of experimental refractive index data [31–35]. The
anion polarizability (αA) in each salt, for which experimental
data is available, was derived by subtracting αC from the
molar polarizability of the crystal as presented by Wilson
and Curtiss [56]. Since there is no experimental data
available for either the zinc-blende structured polymorphs of
KI and RbI or for the rock-salt phase of CsI, each anion
polarizability was taken to be the same as that in the phase
stable under ambient conditions. The polarizability of any
iodide ion is sufficiently large that the required values cannot
be deduced from the expression [31] relating polarizability to
the equilibrium bond length shown to be reliable for fluorides,
chlorides and bromides [4]. The dipole–quadrupole CDQ

8 (XY)

and quadrupole–dipole CQD
8 (XY) dispersion coefficients were

derived by scaling [2] the values predicted by the Starkschall–
Gordon formula [57]. The required electronic expectation
values, 〈r 2〉 and 〈r 4〉, presented in table 3, were computed
considering only the six outermost electrons as justified
previously [1, 48]. The scaling factors K (CC), K (AA),
K DQ(CA) and K QD(CA) have been found [2] to quite
insensitive to nuclear charge but to be slightly more dependent
on the total ion charge. They were therefore taken to
be those derived from a comparison of the ab initio and
Starkschall–Gordon formula predictions for the ions pairs in
the rock-salt phase of NaCl [2]. The dispersion damping
parameters were evaluated as previously. The cation values
were calculated from the orbital eigenvalues produced by
Dirac–Fock calculations for the free cations [1] with the anion
ones being derived [6] from the spatial decay of the in-crystal
anion OHSMFS Dirac–Fock wavefunctions.

The Axilrod–Teller triple dipole dispersion coeffi-
cients [58, 59] were calculated from the ion polarizabilities us-
ing the Midzuno–Kihara formula [60, 61]. Values thus derived
are known to have errors no greater than 5% [35].

2.2. Results

2.2.1. The inter-ionic potentials. The rearrangement
energies and short-range cation–anion interactions, presented
in the supplementary material (available from stacks.iop.org/
JPhysCM/20/085222), show the same trends as those already
elucidated for a wide range of other ionic crystals [1–7, 9].
Thus both E0

re(R) and Ere(R) increase with decreasing R
in each structure, with increasing coordination number at
constant R and counter cation and with increasing cation
size at constant R and coordination number. Both V 0

sCA(R)

and VsCA(R) decrease with increasing coordination number
at constant R and counter cation and with increasing cation
nuclear charge at constant R and coordination number.

Almost all of the standard modelling programs based
on potential functions cannot handle separate rearrangements
energies. Since the GULP program [62], used to model [39]
the encapsulated iodides, falls into this category, it was
necessary to define [3] for each crystal the cation–anion
effective potential V eff

sCA(R) as

V eff
sCA(R) = VsCA(R) + 1

6 Ere(R). (2.5)

This definition ensures that the total energy (2.2) of a
rock-salt structured bulk crystal is reproduced by standard
expressions for U nd

L (R) in which no rearrangement energies
appear explicitly.

It has been suggested to us that it would be interesting
to compare the potentials presented here with those [29, 63]
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derived many years ago by empirical fitting to a wide range
of experimental data. It should be pointed out that, at the
time of these earlier works, reliable values were not known
for either the vast majority of ionic polarizabilities or inter-
ionic dispersion coefficients. Consequently some credence was
given to a set [36] of such coefficients most of whose members
are now known from accurate ab initio computations [35]
to be in error by factors of three or four. The successful
reproduction [29, 63] of a wide range of experimental data,
although constituting very strong evidence that the total
potentials are trustworthy for the bulk crystals, does not
provide any evidence for the reliability of the individual short-
range and dispersive contributions.

One example of the observation just made is provided
by the assumption in the derivation of both sets of potentials
presented in [63] that the closest cation–anion dispersive
attractions are negligible. This assumption can now be
seen to be unsustainable because the present trustworthy
calculations show that the attraction between one cation and
one anion is −0.001 603 au for KI at R = 6.7 au and
−0.002 401 au for RbI at R = 6.875 au. The neglect of these
dispersive attractions in [63] caused each of the empirically
deduced cation–anion short-range repulsions to be only 2/3
of the effective potentials (2.5) derived from the VsCA(R)

and Ere(R) presented here in the supplementary material
(available at stacks.iop.org/JPhysCM/20/085222). However
each of the total non-point Coulomb interactions, derived
by adding to V eff

CA(R) the dispersive attraction calculated
from the coefficients and damping parameters presented
in tables 2 and 3 for the interaction of one cation with
one anion, is very similar but slightly larger than the
previous short-range terms. Furthermore, addition of
the contribution V cov

CA (R) derived here semi-empirically in
section 3 brings each of the present and previous total cation–
anion potentials into very close agreement at all distances
except for those so short as to be of no relevance to
experiments performed under ambient conditions. These
results are illustrated graphically in the supplementary material
(available at stacks.iop.org/JPhysCM/20/085222). Since the
two parameters determining the function V cov

CA (R) were derived
by fitting to experimental data obtained under ambient
conditions, it is not known whether V cov

CA (R) is reliable
for distances less than about 5.5 au. Both the present
computations and previous semi-empirical analysis agree in
predicting both that the short-range cation–cation interactions
VsCC(

√
2R) are insignificant and that the anion–anion terms

VsAA(
√

2R) in RbI are small. For KI, the ab initio results
show that VsAA(

√
2R) is not insignificant for anion–anion

distances somewhat smaller than
√

2Re in contrast to the
previous values [63] computed using the original Gordon–
Kim electron gas method. It is explained in the review [11]
why the Gordon–Kim method in its original unmodified
form underestimates the uncorrelated short-range repulsions
originating from the overlap of wavefunctions centred on
different atoms. The dispersion coefficients C6(CC) and
C6(AA) of both the two sets of potentials in [63] are now
known to be untrustworthy with those in the second set being
in error by about 50%. In the first set, it was assumed that

C6(CC) = C6(AA) so that, although the latter are also in error
by about 50%, the C6 (CC) coefficients, whose true values
are much smaller, were too large by factors of up to 21. For
KI the total, C6(CC) + C6(AA), of [63] is some 50% and
larger than the total derived from the data in table 2 and,
furthermore, the dispersion damping was neglected in [63].
Nevertheless, the present total dispersive attraction between
second nearest neighbours is similar to the corresponding
semi-empirical results for distances in the vicinity of Re as
shown by the figures in the supplementary material (available
at stacks.iop.org/JPhysCM/20/085222). This similarity arises
because the present inclusion of the dipole–quadrupole
dispersive attractions corrects for the previous overestimation
of the dipole–dipole terms. For RbI, the previous [63] total
C6(CC) + C6(AA) is some 90% larger than that derived
from table 2. This causes the previous total second nearest
neighbour dispersive attraction to be somewhat greater than
that predicted here as shown by the figure in the supplementary
material (available at stacks.iop.org/JPhysCM/20/085222).

A second set [29] of semi-empirical potentials dating from
the 1970s used dispersion coefficients [36] most of which
are now known to be error by factors of about four, the
dipole–dipole coefficients being too large with the dipole–
quadrupole coefficients being underestimated by the same
factor. The consequent serious overestimation of the dipole–
dipole dispersive attractions compounded by the neglect of the
dispersion damping more than outweighed the underestimation
of the dipole–quadrupole attractions thus causing the total
dispersive attractions in [29] to be between and 3 and 4
times larger than the present totals. Consequently, the semi-
empirically determined short-range cation–anion repulsions
are significantly larger than the present V eff

CA(R). However each
sum of the previous cation–anion short-range and dispersive
interactions is less than the present results even if the V cov

CA (R)

term is included. This shows that the crystal cohesion is only
satisfactorily described by the potentials of [29] if the fractional
ionic charges, each less than unity used in that work, are
introduced.

Although the previous semi-empirical potentials [29, 63]
in totality yielded a good description of the bulk rock-
salt crystals, the contributions of short-range and dispersive
interactions in an encapsulated nanocrystal are unlikely to
be in the same ratio as in the bulk solids. It should
therefore be expected that the semi-empirical potentials would
be unsuitable for studying the nanocrystals on account of
both the significant differences between the semi-empirical and
ab initio short-range terms as well as the large differences
between the previous [29, 63] and present dispersive
attractions.

2.2.2. The crystal cohesive properties. The present
predictions, derived from (2.2), for the crystal cohesive
properties, as manifested by the lattice energy De[−UR(Re)],
closest equilibrium cation–anion separation Re and bulk
modulus B , are compared with experiment in tables 4 and 5.

The results computed without including the Axilrod–
Teller energy UAT(R) were derived from the function UL(R)

which differs from (2.2) only in the omission of UAT(R).
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Table 4. Experimental and predicted cohesions of KI and RbI. (Note: lattice energy De in kJ mol−1, equilibrium closest cation–anion
separation Re in au and bulk modulus B in 1010 Nm−2. Experimental De at 0 K: KI [66–68], RbI [67, 68]. Experimental Re at 0 K from [69].
Experimental B at 4.2 K derived as (C11 + 2C12)/3: KI [70], RbI [71].)

KI RbI

B3 (4:4) Rock-salt B1 (6:6) B3 (4:4) Rock-salt B1 (6:6)

UL(R) UL(R) +UAT(R) Expt UL(R) UL(R) +UAT(R) Expt

De 590.9 627.3 624.2 648, 649, 650 570.2 608.9 605.5 630, 632
Re 6.649 6.813 6.843 6.608 6.945 7.059 7.095 6.863
B 0.698 1.286 1.264 1.273 0.678 1.084 1.024 1.310

Table 5. Experimental and predicted cohesion of CsI. (Note: lattice energy De in kJ mol−1, equilibrium closest cation–anion separation Re

in au and bulk modulus B in 1010 Nm−2. Experimental De at 0 K from [66–68]; Re at 0 K from [69] and B at 4.2 K from [72] derived from
(C11 + 2C12)/3.)

Rock-salt B1(6:6) CsCl type B2 (8:8)

UL(R) +UAT(R) UL(R) +UAT(R) Expt

De 585.7 581.6 594.3 587.6 604, 610, 613
Re 7.398 7.430a 7.529 7.598 7.375
B 1.216 1.111 1.346 1.136 1.441

a Experimental value at room temperature, when the phase is
metastable, is 7.238 au [69].

The results for KI and RbI predict, as would be expected,
that the phase observed at room temperature, the B1 rock-
salt structured polymorph, is more stable than the B3 fourfold
coordinated phase having the zinc-blende structure. For
CsI, the calculations correctly predict that the B2 eightfold
coordinated phase having the CsCl structure observed at
ambient temperatures, has a lower energy than the B1
structured polymorph. The difficulties of correctly predicting
that the former phase is more stable have been fully discussed
previously [3, 4, 12–15].

The lattice energies of the lowest energy phases of KI,
RbI and CsI predicted with the inclusion of UAT(R) are
underestimated by 25, 25 and 16 kJ mol−1 respectively. These
differences are only slightly reduced to 23, 21 and 10 kJ mol−1

if UAT(R) is not considered. These discrepancies, particularly
those for KI and RbI, are significantly larger than those found
for the LiF, NaF, NaCl, AgF, PbF2 [1], MgO, CaO [6, 7],
CaF2 [2], RbCl [5] and CsCl [4] systems previously examined
for which the predicted De values differed from experiment
by no more than 5 kJ mol−1 at most. The equilibrium cation–
anion separations (tables 4 and 5) in all three iodides are
overestimated compared with experiment by at least 0.2 au,
excepting that for CsI without considering UAT(R) where the
discrepancy is reduced to 0.15 au. These overestimations of
Re are relatively small in fractional terms, being some 3%,
excepting the 2% error for CsI without considering UAT(R).
Nevertheless these 0.2 au discrepancies are significantly
larger than any of those arising in the previously examined
crystals just listed including that of ThO2 [9] for which no
fully experimental value for De is available. The largest
overestimation for any of these Re is that of 0.065 au for RbCl
if that of 0.077 au for LiF is legitimately discounted on the
grounds that this computation used for the anion environment
in-crystal the older RVMW model which is now known [4, 6]

to provide a less accurate description than the later ODMFS,
OEMFS or OHSMFS models.

Re-examination of the calculations for these three iodides
should initially focus on the contributions from electron
correlation both because the evaluation of the non-correlated
terms is essentially variational and because the former are
more significantly different from the corresponding quantities
in the materials studied previously. Since, however, there is
no significant qualitative difference in the short-range two-
body correlation terms, it is the two remaining correlation
contributions, Ecorr

re (R) (2.4) and the dispersion energy, that
need to be considered. The evaluation of Ecorr

re (R) should
be re-examined because the value of Bcorr was taken to be
the same as that for the Cl− ion. Both this value (0.544)
and that of 0.576 for the F− ion were derived as the ratio
of the exact free ion total correlation energy to that of the
total correlation energy predicted from the Cowan modification
of the density functional theory of a uniform electron gas
(equation (12) of [2], (4.2) of [6]). The former energies
were derived using experimental values for all the ionization
potentials. The Bcorr value for the I− ion cannot be evaluated
by this method because experimental data is only available for
the first few ionizations. In the test computation to be reported,
Bcorr is increased to 0.8. Any larger Bcorr value can be rejected
because this would cause the total rearrangement energy
Ere(R) to become negative for some distances. The dispersion
energies for the iodides are larger than those for most of the
systems previously studied. For example, Udisp(R) for the
B2 phase of CsI is some 90 kJ mol−1 around its equilibrium
geometry of 7.375 au compared with 79 kJ mol−1 for CsCl
near its equilibrium separation. The values of the dispersion
coefficients themselves, being derived from well established
methods, are less open to question than those of the damping
parameters dC and dA. It is now well established [1] that
neglect of the dispersion damping produces Udisp(R) energies
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too great in magnitude, thereby causing the crystal cohesion to
be overestimated, as manifested by too large De values and too
small Re distances. Consequently, one test of the accuracy of
the implementation of the present fully ionic model is provided
by a computation with Bcorr increased to 0.8 and the dispersion
damping neglected. However, for KI, the system showing the
greatest underestimation of the cohesion, such a calculation
fails to rectify this difficulty, the predicted De and Re values
being 640.2 kJ mol−1 and 6.679 au respectively. For KI the
damped dispersion is some 82% of its undamped value around
Re with corresponding figures of 85% and 88% for RbI and
CsI. These fractions are similar to those of 85% and 84% for
the B2 and B1 phases of CsCl.

The above considerations indicate that the discrepancies
between theory and experiment should not be ascribed to
weaknesses in the implementation of the fully ionic model.
This suggests that there are non-negligible contributions to
the cohesion of these iodides that lie outside the present fully
ionic description. Not only are these underestimations only
manifested for the iodides, being absent for the fluorides,
chlorides and oxides previously examined, but also they
decrease as the metal becomes increasingly electropositive.
These two observations suggest that the cohesion of each of
the iodides is increased above that provided by fully ionic
binding by a covalent contribution, in which the iodide 5p
electrons become slightly delocalized into the empty ns and
np orbitals of the metal of which the cation outer shell
contains six electrons in (n − 1)p orbitals. This suggestion
should not be taken as evidence against the conclusion drawn
from the studies [64, 65] of materials that had earlier been
thought to be significantly covalently bonded on account of
the symmetries of their structures being much lower than
cubic. The charge-induced dipole interactions shown to be
capable of explaining these structures [64, 65] involve energies
much larger than 20 kJ mol−1 or less discrepancies for the
cubic iodides. Furthermore, any such covalency in the alkali
iodides must be sufficiently small that, at most, it affects the
polarizabilities of the ions only minimally. Thus, it has been
shown [44] in an extensive series of ab initio computations,
using methods of proven reliability [32–35, 43, 47], that the
fully ionic description accurately predicts the polarizability of
the iodide ion in both NaI and KI.

3. Additional cohesion

The significance of the relatively small discrepancies of around
3% between experiment and the present computations for the
cohesion of the three iodides might, for some purposes, be
debatable. However the overestimation of the Re values by
some 0.25 au means that the inter-ionic potentials yielding
these predictions are not sufficient by themselves to use in
modelling the encapsulated alkali iodide nanocrystals. The
evidence presented in the last section suggests that these
discrepancies do not arise from inaccuracies in implementing
the fully ionic description but that there are additional
sources of cohesion lying outside this approach. The small
additional attractive interaction needed to provide a complete
set of potentials for investigating the encapsulated nanocrystals

Table 6. The cohesive properties with inclusion of semi-empirical
addition potential V cov

CA (R). (Note: lattice energy De in kJ mol−1,
equilibrium closest cation–anion separation Re in au and bulk
modulus B in 1010 Nm−2. Bracketed results were assumed in the
fitting procedure.)

De Re B Q ζ

KI B1(6:6) 640.6 (6.606) (1.283) 16.39 1.25
RbI B1(6:6) 623.6 (6.862) (1.310) 9.09 1.15
CsI B2(8:8) 600.7 7.376 1.437 25 000.0 1.80

will therefore be derived by adding a two-parameter model
potential to the cation–anion short-range interactions already
derived on the fully ionic basis. For each bulk crystal
in its polymorph stable under ambient conditions, these
two parameters will be determined by demanding that the
experimental values of both Re and the bulk modulus (B) are
reproduced. The latter property, rather than the lattice energy,
is used in the fitting because B governs the energy change
when the bulk crystal undergoes small displacements from
equilibrium. The Axilrod–Teller energy, UAT(R), is excluded
from these calculations because it is small and moreover its
inclusion would slow very considerably the modelling of the
encapsulated nanocrystals using the GULP program [62].

The most plausible explanation for the underestimations
in the fully ionic model is a small covalent contribution to the
binding, arising from the fully ionic wavefunction becoming
mixed with excited states in which one I− 5p electron is
transferred to the valence ns orbital of the neutral alkali metal.
An expression for the energy originating from this covalency
is introduced just within the closest cation–anion pairs, being
expressed as nCAV cov

CA (R), where V cov
CA (R) is the interaction

within one such pair. Any covalent contribution to the binding,
has been shown to be small, some 20 kJ mol−1 at most, out
of some 600 kJ mol−1 of total cohesion. This justifies its
treatment by perturbation theory when the energy lowering of
each electron, belonging to an I− ion in zeroth order, will be
given by the reciprocal of an energy denominator multiplied
by the square of a matrix element of the Fock operator linking
the occupied anion and vacant cation orbitals. Invoking the
approximation that this matrix element, the resonance integral,
is proportional to the overlap integral, and combining this
proportionality constant with the excitation energy, enables
V cov

CA (R) to be written

V cov
CA (R) = −Q{[1 + ζ R + 1

3 (ζ R)2] exp(−ζ R)}2. (3.1)

Since the two parameters Q and ζ are derived by fitting to
experimental data, the energies V cov

CA (R) will not be sensitive
to the precise form of the fitting function provided that
this is not physically unreasonable. The overlap integral in
square brackets in (3.1) was therefore, to avoid introducing
unnecessary complexity, taken to be that for two hydrogenic 1s
orbitals. The resulting values for the Q and ζ parameters are
presented in table 6 together with the predicted lattice energies
not included in the fitting procedure.

It should be noted that, whilst the fitting will ensure
that (3.1) with the parameters in table 6 provides a good
description for R values both in the vicinity of Re and at large
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R, its mathematical form causes it to become unreliable at
very short distances. However, the total crystal energies at
such distances are sufficiently large as to render them irrelevant
through not being accessible either thermally or through the
application of any reasonable pressure. Although for KI, the
lattice energy predicted with the inclusion of the contribution
nCAV cov

CA (R) still deviates slightly from experiment, the faithful
reproduction of Re and B will ensure that the potentials
computed here, after the inclusion of (3.1), are suitable for
studying the encapsulated iodide nanocrystals.

4. Conclusion

The non-empirical description of KI, RbI and CsI based
on the assumption of full ionicity has been shown to leave
unaccounted a small fraction of the binding which decreases
with decreasing electronegativity of the metal. This fraction
is about 3% for KI and RbI decreasing to 2% for CsI. The
equilibrium cation–anion separations in the experimentally
observed rock-salt phases of the two former iodides are
overestimated by about 0.25 au whilst the prediction for
that of the B2 polymorph of CsI is too large by 0.15 au.
These cohesion underestimations contrast the results of the
calculations for the fluorides, chlorides and oxides which
showed no such disagreements with experiment. This suggests
that the discrepancies for the iodides could arise from small
covalent contributions to the binding.

The dominant contributions to the binding, those captured
by the fully ionic description, have been calculated using
physically soundly based methods of proven reliability. For
each crystal in its ground state polymorph, these have been
augmented with the small residual contribution to the binding
derived by demanding that the experimentally observed closest
cation–anion separations and bulk moduli are reproduced.
The introduction of all these potentials provides a sound
basis from which to develop models for the nanocrystals of
the iodides encapsulated in single-walled carbon nanotubes.
This approach minimizes the magnitude of that component
of the total binding deduced by fitting to experimental data
whilst maximizing the portion containing components each
of which is physically soundly based with parameters thereby
guaranteed to be realistic.
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